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We study the influence of boundaries on the equal-time thermal correlations in 
a three-dimensional fluid maintained under a constant temperature gradient. 
Within the confines of the model for an idealized fluid bounded by two infinite, 
parallel walls, we show that it is crucial to retain the unbounded spatial com- 
ponents in the problem so that the solutions approach meaningful results as we 
move the walls infinitely far apart. In addition, we consider a composite system 
by including the dynamics of the "'walls," and we investigate the conditions for 
the relevant physical parameters under which the details of wall dynamics may 
be neglected by employing the simple boundary condition 6T= 0. 

KEY WORDS:  Correlation functions; nonequilibrium steady states; bound- 
ary effects. 

1. I N T R O D U C T I O N  

The study of fluctuations in nonequilibrium stationary states of fluid 
systems has received considerable attention in the literature. 1~-8~ Prior 
studies of systems in the steady state range from phenomenological ~7~ 
to microscopic treatments based on kinetic theory or mode-coupling 
theory.~4 6~ Despite the numerous theoretical approaches employed, the 
different techniques generally yielded similar results. In addition to the 
breaking of time-reversal symmetry, one obtains nonlocal long-ranged 
correlations of the hydrodynamic variables in a noncritical state. These 
predictions have in fact been confirmed by recent experiments performed 
by Law, Sengers, et aL c9-12~ 

Most of the previous studies have considered hydrodynamic steady 
states in the limit of a large system where boundary effects may be 
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neglected. Recently, there has been renewed interest in the problem of non- 
equilibrium fluctuations in finite systems bounded by solid walls/t32-'~ 
Using the fluctuating hydrodynamics formalism, several papers have 
addressed the spatial correlations of the various conserved densities 
(number, momentum, and energy) of bounded fluids subject to nonequi- 
librium constraints. 

We shall focus in this paper on the static temperature autocorrelation 
function for a fluid maintained under a constant temperature gradient. In 
previous work, the temperature-temperature correlation function has been 
predicted to be long-ranged and encompassing the entire system. ~5"~7"~8~ 
The absence of an intrinsic characteristic correlation length persisted even 
in the limit of a large system of size L. Our results for this problem are 
different. 

This paper is organized as follows: A brief review of the results of Rubi 
et al. ItSI and Garcia et alJ t8~ is presented in Section 2. Using the fluctuating 
hydrodynamics formalism, we obtain the temperature correlator for a 
three-dimensional fluid in Section 3 and show that it reduces to the infinite 
domain solution as L ~ oo. Unlike the previous researchers, we retain the 
unbounded spatial dimensions in the derivation. In Section 4, we study 
the dynamics of a composite system by coupling the thermal modes of 
the walls to system variables. We show the conditions under which the 
problem can be simplified with the simple boundary condition used in the 
derivation of Section 3. In Section 5, we present our conclusions. 

2. REVIEW OF THE PROBLEM 

In this section we present a brief summary of the results of Rubi 
et aU ~5~ and Garcia et alJ ~8~ for completeness. The fluid is bounded by two 
parallel plates at z = 0, L and is infinite in the x, y directions. The bound- 
aries are rigid, impermeable, and held in contact with heat reservoirs at To 
and TL, respectively, where T L > T 0. The two plates are assumed to be 
perfectly heat conducting; thus, the temperature of the fluid at z = 0, L is 
equal to the temperature of the reservoirs. Following previous researchers, 
we impose the restriction that the thermal expansion coefficient vanishes. 
This condition decouples the energy equation from the density and velocity 
equations, thereby vastly simplifying the analysis. Furthermore, the trans- 
port and thermodynamic coefficients of the model fluid are taken to be 
constants. 

The stationary solution to the heat diffusion equation 

0 
Ot T(r, t )=  ctrV2T(r, t) (1) 
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is 

T(r) = T(z)  = To + r" V T  (2) 

where ~r is the thermal diffusivity and V T =  (e,.( T c - To)/L. The equation 
of motion for fluctuations about the steady state has an additional con- 
tribution to the heat flux modeled by a stochastic source: 

1 
~-- T(r, t ) =  0~TVZT(r, t)----~-~ V. d(r, t) (3) 
Ot pc,, 

where p is the mass density and Cp is the heat capacity per unit mass at 
constant pressure. The random part of the heat flux is assumed to be a 
Gaussian white noise whose correlation function is given by 

( J ( r ,  t) J(r ' ,  t') ) = 2kn2TZ(r) f i ( r - r ' )  fi( t - t ' )  l (4) 

where k~3 is Boltzmann's constant, 2 is the thermal conductivity of the fluid, 
I is the identity matrix, and ( - )  denotes a steady-state average. 

The model is further simplfied by taking the parallel spatial Fourier 
transform in the x, y plane. Then the fluctuating hydrodynamic variable f i t  
is reduced to 

i r f= f r~ fiT(z; kll, t )= dx dy e -i(k.~" + k.'-'') fiT(r, t) (5) 

where k~l = k~. + k~. 
Defining 

(fiT(z; kll = 0, t) fiT(z'; ktt =0 ,  t ))  
C(z, z ' ) -  (270 2 fi(klt + kil) (6) 

one gets for the static correlation function (~5"~) 

C(z, z ' )=k~(pCr)  -I T2(z) f i ( z -  z') + f (z ,  z') (7) 

where the fir.st term is simply the local equilibrium contribution, and the 
second term is the nonequilibrium contribution given by 

f ( z ,  z ' )=k~(pCp) - j  (VT)2 Z') --Z-{O(z'-z)z(I.- +O(z-z')z'(L-z)} (8)  

where 0 is the unit step function. The boundary condition used corresponds 
to f iT= 0 at the boundaries (perfectly conducting plates). As a result, the 
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delta-function contribution to the temperature-temperature correlation is 
expandable in a Fourier sine series, i.e., 

~' 2 L sin (~-~)s in  ( ~ )  
, ~ ( z - -  ) = s  (9) 

We note in passing that the procedure described in this section inap- 
propriately reduces the description to a one-dimensional system. 

3. R E A N A L Y S I S  OF THE P R O B L E M :  P A R T  I 

The nonequilibrium contribution to the static correlation function 
predicted in refs. 15 and I8 is long-ranged and encompasses the entire 
system. The result would therefore suggest that the thermal fluctuations at 
any two given points are always positively correlated regardless of the size 
of the system. For large L and VT constant, however, we should expect 
that the solution would exhibit an intrinsic length scale and decay as in an 
infinite system. 

We shall attempt to resolve this paradox in two ways. First, we 
rederive the static temperature correlator in a three-dimensional system 
and show that the solution behaves properly in the limit of a large system. 
Second, in the next section, we justify the simple boundary condition 
6T=  0 at z = 0, L by considering a composite system consisting of reser- 
voirs plus the system of interest. By analyzing the thermal fluctuations in 
the composite system, we arrive at a sequence of characteristic relaxation 
times which allows us to predict a bound on the size of the system where 
boundary effects are important. 

By combining the equations of motion for cST(r, t) and ~T(r', t) and 
using relations (4) and 

(6T(r, t )J(r ' ,  t)) = -kB----~2 Vr. { T2( r )~ ( r -  r')I} 
pc, 

_ k82 V,.{T2(r )6 ( r_r , ) }  (10) 
pc,, 

it is easy to show that ~7t8~ 

0 
8t (~T(r, t)6T(r', t))  = ST(V ]. + V~,)(6T(r, t)~T(r', t))  

kB2 V + 2 ~  ,..V,.,{T'-(r),~(r-r')} (11) 
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Using T(r)= T o + r - V T =  T(z), one obtains for the correlator at steady 
state 

(V~ + V2,)(~T(r, t) ~T(r', t ) )  + 2  - -  
(VT) 2 k a 

pc,, ~ ( r -  r') = 0  (12) 

where 

(~T(r, t) tST(r', t))  - (~T(r, t) t~T(r', t)) 
kBT2(r) 

pc, - -  d ( r -  r') (13)  

We shall omit the time dependence of the correlator, since we are dealing 
with the steady state. Examination of Eq. (12) reveals that it is essentially 
the same as the Poisson equation for the electric field generated by a point 
charge. Thus, the temperature-temperature correlator defined by (13) may 
be interpreted as the potential at r corresponding to a source (VT) 2 ka/pC p 
at r'. For the case of an infinite system, the potential is a function of I r -  r'l 
only: 

(VT)2 k~ ( 1 ) 
(fiT(r) fiT(r')) pCp 4re [r-r'[ (14) 

This long-range behavior decaying as [ r - r ' l - t  has also been predicted 
for the density-momentum correlation in a infinite fluid subject to a tem- 
perature gradient. 17~ 

Using the boundary condition ~T= 0 for z = 0, L, it is straightforward 
to show that the correlation function for the bounded fluid is given by c231 

(fiT(r) ~T(r')) 

I,,~o/ 
_(VT) ' - kB( I  1 ~. 1 ) ( 1 5 )  

pCp 4z~ I r - r ' l  +,,= ~_~. 4re ] r - r ' ]  ,,= -~ 4re ] r - r " l  

where r'. =exx'  + % / + e , ( 2 n L + z ' )  and r" =exx'  +eyy '  +ez(2nL-z'). 
Note that in Eq. (15) we have explicitly separated the term corresponding 
to the infinit~-dimension solution from the first summation. To be specific, 
we shall consider the case where z' =L/2. The infinite series given in 
Eq. (15) does not converge rapidly unless we have the condition 

I r - r ' l  ~ L  (16) 

When this condition is satisfied, the temperature correlation function is 
given by the infinite-domain solution plus a small correction term. Thus, 

822/86/1-2-13 
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the influence of the boundaries on the fluctuations in the bulk of the fluid 
vanishes as the plates move infinitely far apart, which is the behavior we 
expect from physical intuition. A similar result was obtained by Spohn ~22~ 
for the nonequilibrium correlations of a stochastic lattice gas. 

4. R E A N A L Y S I S  OF THE P R O B L E M :  P A R T  II 

In this section we shall motivate the simplified boundary condition 
fiT--0 by including the dynamics of the heat bath in our model. Following 
Procaccia et al., ~ we shall consider an isolated composite system with 
three compartments, two of which are the reservoirs separated by the 
system of interest. The boundaries of the system of interest are located at 
--L and L. Again, we shall consider only the thermal modes of each com- 
partment. Thus, the corresponding heat diffusion equation is given by 

0 
0t T(r, t )=~r ( r )  V2T(r, t) (17) 

where the thermal diffusivity ~r ( r )=  c~r(z) is given by 

fod~ for - L e < ~ z < ~  - L  

~r(r) = ~c~ s for - L < < . z < ~ L  

( ~  for L < ~ z < ~ L B  

The boundaries between the compartments are rigid and impermeable, 
but heat conducting. By imposing the boundary conditions that T(r, t) and 
the energy flux are continuous and the initial condition 

f 
T _ L  

T(r, 0)=T(z,  0)= T s.. 

for -- L B <~ z <<. - - L  

for - L <<. z <<. L 

for L < < . z ~ L H  

it can be shown that for an intermediate time scale the temperature is well 
approximated by ~l~ 

T ( r , t ) = T ( z , t ) =  T _ t  + 

for -- L B <~ z <. - - L  

T c - T - L ( z + L )  for - L < . z < . L  
2 L  

for L <~z<~LR 
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Specifically, for the time interval 

L 2 (L~-L)'- ~<t< ~ (18) 

and the condition 

B /  S _...+ 
G . r / O t .  T ( 3 0  (19) 

the middle compartment has the usual steady-state temperature distribu- 
tion. Thus, in order to maintain this quasi-nonequilibrium steady state for 
a long time, we choose highly conducting reservoirs of large extent so that 
the conditions (19) and ( L s -  ~ B L)-/o~T ~ ov are satisfied. 

Within the time interval (18) where a steady state is maintained, we 
will in the following analyze the corresponding thermal fluctuations. The 
equation of motion for &T(r, t) is given by 

8 
at fiT(r, t) = ~r(r) Y 2 6T(r, t) - ~r(r) 2-I(r )  V-J(r ,  t) (20) 

where ~r(r) was given previously in this section and ~ r 2 - t  = (pC~,)-t is 
~-2 n ' for the bath and s rAs for the system. Using the relation 

A(z; ktt, w) = A(r, t) exp(iwt -- ikil. ru) drtl dt (21) 

where A is an arbitrary dynamical variable, we reduce Eq. (20) to an 
ordinary differential equation in the variable z: 

[ h~' + ~ r ( - - ) ~ ]  67"=o~r(z))~-'(z)(~--z3:+ikll'~Jll ) (22) 

with ~, = w + i~r(z) k~l. Whenever confusion can arise, we will denote ~T,s as 
I .V-~- " B / 2  �9 S 2 ic~rKu and ~s as w + 1~ rku. The solution to the preceding equation can 
be expressed in terms of a Green's function: 

? (0 ) 
67"(z;ku ,w)=ccr(z)2- ' ( z  ) dz' G(z ' ,z;ku,  w ) ~ ; 3 : . + i k u ' 3 j l  (23) 

--  L I t  

where the Green's function satisfies the equation 

C9 2 ] "" 
,. ,kll,  i f f '+~r(Z)~z  2 G(z, w) = &(z-- z') (24) 
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and is subject to the homogeneous boundary conditions corresponding to 
(e.g., ref. 24) 

3 ~-", w) _-= +L, = 0 (25) 28-~z G(z, kll, 

G ( - L - O ,  z'; kll, w ) =  G ( - L  +0,  z'; k, ,  w) (26) 

w) - 2 ~ G(z, z'; klL, w) _-= (27) 28 G(z, z'; kii, - s c3z 
z =  - - L - - 0  - - L + O  

G(L-- 0, z'; kll, w)= G(L+O, z'; kll, w) (28) 

2 0 := 0 . . . .  w) :=L+o (29) sozG(z,z';kll, W) =)~8 G(,.,z ,kll, 
L - 0 

Since we are interested in fluctuations in the middle compartment 
only, we shall quote the explicit form for the Green's function 
G(z, z'; kll, w) for z, z' ~( - L ,  +L): 

7S{s inh(L+z<)+As  c o s h ( ~ ) )  G(z,z';k,, w)= -o--~r \ 7s / )'s6 

x {sinh (L-z>'~ + 2S cosh ( L - z >  ~ l 
\ )'s / 7s8 \ )'s / )  

x [ {sinh (~-s) + ~ c~ (2~-~-s) } 

2 s {  (2L)  ;t s (2Ls,)}] - '  + ~ cosh + --}'s3 sinh 

where z< =min(z, z'), 
and 

(30) 

Z > m a x ( z ,  z t ) ,  _ �9 s ~ I / 2  i / 2  = 7s-- (t~v/Ws) , 78 = (io~/~T'8) 

6=  28 tanh (L~-I_,) 
7B \ 1'8 / 

Note that alternatively G in Eq.(30) satisfies the effective boundary 
condition 

O 
2S-~z G(z, z'; kll, w)+ fiG(z, z'; kit, w)= 0 

for z=+_L and z ' e ( - L , + L )  (31) 
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where 6 is a frequency-dependent temperature-slip coefficient of the 
boundary} 25) In effect, we have included all the dynamics of the heat bath 
into a single surface transport coefficient. We remark that Eq. (30) for 
the Green's function with a constant 6 coefficient was obtained by 
Pagonabarraga et al} ~6) 

Using standard manipulations with Green's functions, it is straight- 
forward to show that the expression for the temperature correlation func- 
tion between two points within the middle compartment is given by 

<6T(z; ktl, w) 6T(z'; k]l, w)> 
2kB(as2.~- ' ) 2 6(w + w') 6(kll + klt ) 

- 2  ~.~2.~, [G(z',z) T2(z ' )+G*(z,z  ') TZ(z)] 

2s(VT)'- 
+ i - -  

W 
[G(z', z ) - G * ( z ,  z')] 

z') 0 ] :. - 2 s  G(zl,z) G*(zl, ~zl T2(zl) =+L 

+[ 2s'(VT) 2 ~r ~) ~ G*(z,,  z') i �9 G(zl, 
W - OZ I 

- ,')a---G(z, z)] =, +i+} G*(z , ,_  Ozt ' =_ (32) 

where we have suppressed the w and kll dependence in G(z, z') for nota- 
tional simplicity, the asterisk denotes replacing w by - w ,  and V T =  
(TL- -T  L)/2L. The preceding expression can be simplified since we will 

"~ B consider the limits ( L B - L ) - / e . r ~  ~ and /3 s r / e r ~  m" Under these con- 
straints, the combination 2s/)'s6 that appears in the Green's function in 
Eq. (30) becomes 

)'.s.6 \2BJ\3's /  \ 7u / 

When condition (33) is satisfied, the boundary condition for G, Eq. (31), 
reduces to 

G( +L, z'; ktt, w)=  0 (34) 
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or equivalently 6 T = 0  at the boundaries. The previous conclusion is 
perhaps not surprising since, intuitively, we expect a perfectly conducting 
bath to dissipate thermal fluctuations infinitely fast at the boundaries. We 
may thus neglect the last two terms in Eq. (32) and insert for G 

G(z, z'; kl), w) = G(z, z', )'v s) 

Ys sinh((L + z < )/~'s) sinh((L - z > )/~'s) 
= ~s r sinh(2L/ys) (35) 

By examining Eq.(35), we can infer two time scales, ( L + z < ) - / ~ ~  and 
( L - .  ' s" ~> )-/~-~-, corresponding to the time it takes for a thermal fluctuation 
generated at z< (or ->)  to reach - L  (or L). Physically, we expect that if 
this thermal diffusion time is much longer than the typical hydrodynamic 
relaxation time, we may neglect the boundary effects. Indeed, if we take the 
limit L2/otsr~ oo (but [ L 2 / ( L • - L )  2] o~/o~'~ 1) and with z and z' not at 
the boundaries, G in Eq. (35) reduces to the Green's function for an infinite 
system. 

For a finite system, we expand Eq. (35) in a Fourier series: 

G(z,~-', )vs)= ~ G,,(z', ff s) ei( ..... L) (36) 
i t  ~ - - , - y -  

In order to calculate the equal-time averages for the temperature 
correlator, we must perform an integration over w and w' of Eq. (32). It is 
easy to show, using the series expansion for G, that the first term in 
Eq. (32) will generate the local equilibrium contribution proportional to 
T Z ( z ) f ( z - z ' ) .  The remaining nonlocal contribution is given by the 
expression 

<OT(r) ~T(r')> 

f- 
= i  (2zc)3 _.-~ dkll _.~ dwexp[ ikH. ( r l ) - r i l )  ] 

~ { ' ~ ' s ) -  * ' " )} G,( z ,  n;~z G,, (z, w s 
x exp t (37) 

w L 
n = -:~ 

This result is formally equivalent to Eq. (15) except for the change in the 
boundaries of the system from 0, L to - L ,  L. In the limit of large L, suffice 
it to say that the Fourier series converts to an integral with nn /L=k=,  
yielding as a result the three-dimensional Fourier transform of 1/k 2, which 
is proportional to I r -  r ' l -  ', as expected. 
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5. CONCLUSION 

In this paper we have examined the influence of boundaries on the 
thermal c6rrelations of a three-dimensional fluid system. We have restricted 
our analysis to an idealized system in which the thermal modes are 
uncoupled from the other conserved densities. Furthermore, the assump- 
tion that the thermodynamic and transport coefficients of the fluid are con- 
stants restricts the length scale for which we probe the system to be smaller 
than a characteristic macroscopic length. We emphasize that for this par- 
ticular model it is important to retain the parallel (i.e., unbounded) spatial 
components in the problem so that the temperature correlator behaves 
properly as we let the boundaries move infinitely far apart. 

Ultimately, the influence of boundaries on bulk dynamics depends on 
the length and time scales for which we probe the physical system. As men- 
tioned previously in Section 4, one can roughly estimate the importance 
of boundaries by comparing the thermal diffusion time L'-/oc~. to the 
characteristic relaxation time one is probing, say rprobe. For  the case 
L2/o~-~ "t'probc, one should be able to neglect the boundaries for correlations 
within the fluid system. For concreteness, we can choose parameters corre- 
sponding to a typical light scattering experiment on water at 283 K, which 
has a thermal diffusivity of 1.38 x 10 -3 cm 2 sec -~. For  this system, if the 
characteristic time scale one is probing is of the order of 10 -7 sec, the 
previous argument would suggest that boundary effects can be neglected 
for thermal bulk dynamics if L is greater than 10 -5 cm. 

Our present results differ markedly from those obtained in refs. 15, 17, 
and 18. We have considered a three-dimensional system and have properly 
treated the spatial components parallel to the walls across which heat is 
transferred. Even though there is a temperature gradient in the z direction 
only, this is not a one-dimensional system, which the previous results effec- 
tively describe. 
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